
SENRA Academic Publishers, British Columbia
Vol. 8, No. 1, pp. 2775-2782, February 2014
Online ISSN: 1920-3853; Print ISSN: 1715-9997

DESIGN OF GENERIC ANTIVIRUS SYSTEM

Osaghae OE, *Egbokhare, FA and Chiemeke SC
Department of Computer Science, University of Benin, Benin City, Edo State, Nigeria

ABSTRACT

Antivirus software developers are advocating for sophisticated antivirus designs to implement their antivirus systems.
However, the current antivirus systems heavily rely on updating of their malicious signature databases to detect
malicious codes in executable programs. The problem with frequent update of malicious signatures databases is that it is
not scalable; it cannot detect malicious code whose signature is not in the malicious signature database. Consequently,
we designed a generic antivirus system that does not contain malicious database but rather, malicious codes are detected
by the type of operating system functions used by the executable program. The proposed generic antivirus system uses
deterministic finite automata, Naïve Bayes and Chi square techniques to detect malicious codes in executable programs.
When the generic antivirus system is deployed to any operating system environment, malicious codes can be accurately
detected in executable programs without a need to update its malicious signature database.

Keywords: Antivirus scanners; Malicious Software; Malicious Signatures.

INTRODUCTION

Antivirus (AV) scanners are used in an attempt to directly
protect computer systems from damages. AV scanners
detect a specific type of unauthorized activity in the form
of malicious code, collectively known as malware. A
recent study shows that 81% of all computer users have
antivirus software installed on their computer (Feng,
2008). Malicious code is a computer program that
modifies a system call or the functioning of a program
without the consent of the user of the system. Malicious
codes can be classified as virus, worm or a Trojan horse
(Devara and Murali, 2012). A virus is a computer
program that does not have the capability to replicate on
their own, and rely on using other computer programs as a
host in order to spread (Microsoft, 2004). A worm can be
defined as malicious code which is either requires human
intervention or not in order to propagates through a
network. The release of worms on computer networks has
cost billions of dollars in wasted time and resources.
Trojan horse is a non-replicated malicious code designed
to cause damage to computer systems, by masquerading
as benign programs. A Trojan horse is also regarded as a
computer program that appears to have a useful function,
but also has a hidden and potentially malicious function.
A benign program is an executable program that does not
contain any malicious code (Harley and Lee, 2009;
Greensmith and Aickelin, 2005; Tikkanen, 2010).

The most common approach developed in anti-virus
software products and tools to identify the viruses and
malwares is signature-based scanning. It makes use of
small strings, named as signatures, which are the results

of manual analysis of viral codes. A signature must only
be a sign of a specific virus and not the other viruses and
normal programs. Accordingly, a virus would be
discovered, if the virus related signatures were found
Babak et al. (2011).

Antivirus definitions are databases that contain
information used to identify viruses. Antivirus scanning
engines are designed to identify specific viruses using the
aforementioned definitions and by recognizing
characterized behaviour. Antivirus software vendors
release a new virus definition (databases) for their
software products when they find new viruses. These
vendor-specific database definitions are used by antivirus
software to identify known viruses and/or virus-like
behaviour. When information about a specific virus is
included in a virus definition, it is said to be a known
virus NetApp (2006).

Computer malwares can be classified according to their
infection mechanism. The mechanism can be in the form
of Encryption, oligomorphism, polymorphism and
metamorphism. Encrypted virus changes its body binary
code with some encryption algorithms to hide it from
simple view and make it more difficult to analyze and
detect. Oligomorphic virus substitute decryptor code in
new offspring, which makes the detection process more
difficult for signature based technique. A polymorphic
virus is a malicious code that when it decides to infect a
new victim program, it modifies some pieces of its body to
look dissimilar. Polymorphic virus has capability to create
infinite new decryptors. Metamorphic virus mutates all of
its body and it also changes the code of decryption loop
(Babak et al., 2011).
 *Corresponding author email: fegbokhare@yahoo.com

Osaghae et al. 2776

The first generation of antivirus products was purely
based on signature detection technique. The second
generation made attempt to identify and stop network
worms based on packet signatures. It also has the ability
to disinfect and restore the Operating System from
spyware or Trojan backdoor infection. The third
generation was developed to effectively block zero-day
malware proactively without any dependency on viral
signatures. It uses behavioural analysis and behavioural
blocking. Behaviour analysis is process to intercept API
calls made by an executable program to determine if these
API calls are used for malicious intent or not. To prevent
malicious attacks generically, it is cost-effective to use
behavioural blocking technique to restrict the actions that
authorized executable programs can perform in the
system when it is noticed that it contains malicious API
calls Kumar and Spafford (1992).

The specific objectives of this study are to review the
extent of improvements made to the antivirus systems and
design a generic antivirus system that detects malicious
codes in executable program based on how its uses
operating system functions.

Kumar and Spafford (1992) described a virus detection
tool called a generic virus scanner. This tool is completely
general and is structured in such a way that it can easily
be augmented to recognize viruses across different system
platforms with varied file types. The implementation
defines virus features common to all scannable viruses.
The approach used to develop this tool is easy to
understand. By combining string sets, it is believed that
the coverage may be obtained in a manner superior to
most commercial scanners currently available. The tool
uses a pattern matching technique to identify malicious
signatures in an executable program (Kumar and
Spafford, 1992) and this can be evaded by sophisticated
malware codes.

Roberto et al. (2004) proposed a WHIPS prototype also
known as a Reference Monitor (RM) for the detection and
prevention of Windows dangerous system calls
invocation. WHIPS was designed and implemented to
stop common exploits that use the buffer overflow
technique to carry out privilege escalation on a system. If
a malicious user wants to execute a shell in a context of
the exploited service, WHIPS will prevent the attack by
stopping the execution of the dangerous system call that
invokes the shell. WHIPS is implemented as a kernel
driver, also called kernel module, using the
undocumented structure of the Windows kernel and the
routines typically employed for driver development. The
problem with WHIPS is that it was considered to be more
efficient if it were implemented directly into the Windows
kernel, instead of as a kernel driver Roberto et al.
(2004).

Antivirus scanners of first generation employed non-
complicated techniques in order to find known computer
viruses. These set of scanners typically looked for certain
patterns or sequences of bytes called string signatures.
Antivirus scanners of the second generation was
introduced when the earlier scanners lost their efficiency
by using simple pattern scanning techniques to detect
newer and more complicated viruses appropriately. Then
the second generation of scanners introduce almost exact
recognition that caused the antivirus scanners became
more trustable. Antivirus scanners of the third generation
use virus specific detection algorithm. This type of
detection algorithm denotes any special method that is
specifically designed for a given particular virus. This
technique may bring about many problems such as
portability of the scanner on different platforms and
stability of code. To overcome these problems, virus-
scanning languages have been developed that in scanned
objects are allowed. Antivirus scanners of the fourth
generation simulates the computer central processor, main
memory, storage resources and some necessary functions
of operating system by a virtual machine to run the
malware virtually and investigate its behaviour and
performance. The malicious code does not execute on
actual machine and it is controlled by the virtual machine
precisely, therefore there is no risk for unintentionally
propagation of malware. These set of antivirus scanners
can detect encrypted, polymorphic, metamorphic and
oligomorphic viruses (Babak et al., 2011).

A packer is a software tool that can modify and compress
an executable file by encrypting and changing its form
from its original format. The final result is a modified
executable which, when executed, does exactly the same
thing as the original code, but from the outside has a
completely different form and therefore evades signature-
based unless either the engine has the specific unpacking
algorithm or it is able to unpack it generically (Pedro et
al., 2012; Guo et al., 2012).

The most important piece in any antivirus infrastructure is
the virus definition file. Antivirus product clients keep
their protection current by regularly updating virus
definition files. These files contain the signatures of all
the known viruses and are used by the scan engine. When
a new virus comes out, the definition files need to be
updated so that client software can detect the new virus.
The definition files also give the client instructions on
how to clean viruses from a file. Updating virus definition
files quickly and efficiently is crucial in any business,
especially in a virus situation. In a well-designed antivirus
architecture, the clients will automatically update virus
definition files on a regular basis (Speice, 2003; Morton,
2010).

Canadian Journal of Pure and Applied Sciences 2777

MATERIALS AND METHODS

METHODOLOGY

In this section, we describe the design of the proposed
antivirus system shown in figures 1, 2 and 3. One way to
begin the design of any program is to describe the
behaviour of the program by a Conceptualized Diagram.
In an operating system, an executable program makes a
set of system function calls S1, S2, S3… Sn. The system
functions take various numbers of parameters S1(P1, P2,
P3,…, Pc1), S2(P1, P2, P3,…Pc2), S3(P1, P2, P3,… Pc3), …,

Sn(P1, P2, P3, …, Pct). Where n is the number of system
function calls made by the executable program, and c1,
c2, c3 and ct are the number of parameters used by the
system functions. The purpose of this design is to define
how the proposed antivirus system will detect the set of
malicious system function calls made by an executable
program. Figure 1 shows the behaviour of the feature
extraction phase of Detection system. An executable
program can contain executable statement_1(S1),
statement_2(S2), statements_3(S3),…, and
statement_n(Sn). Each of these executable statements can
either be code or data. If it is code, it can be converted to

Fig. 1. Feature Extraction Phase of Detection System.

Osaghae et al. 2778

assembly code using a disassembler but if it is data then,
it has been packed. The content of the program is sent to
the Unpacking section which will attempt to convert an
identified executable data statement back to its equivalent
executable code. The unpacking executable software
section uses a procedure called P(Sk). P(Sk) procedure
takes one argument at a time called statement (Sk) and
attempts to covert it to its equivalent executable code
using a procedure called unpacked (Uk). When the
unpacking section has finished its function, it will pass the
processed content of the executable program to the
disassembly section. The System Call Disassembly
module takes the responsibility of converting the
sequences of executable statements to equivalent
assembly code statements. This module has a procedure
called D(ui) which takes unpacked executable code ui as
argument and produces an equivalent assembly code
statement ai. It disassembles each of the unpacked
executable statement and produces their assembly code
equivalent ai in the form of a1 ← D(u1), a2 ← D(u2), a3
← D(u3),…, an ← D(un). When unpacked executable
code ui is successfully converted to assembly code
equivalent ai, the virus detector expresses it in the form of
a1 ← u1, a2 ← u2, a3 ← u3,…, an ← un.

When the System Function Call Disassembly module is
unable to convert the unpacking executable code ui into
its equivalent assembly code, then there is a problem. The
problem is the Unpacking Executable software module
was not able to unpack the program content s1, s2, s3,…,
sn. The implication of this is that the virus detector
expresses the program in the form of a1 ← d1, a2 ← d2,
a3 ← d3,…, an ← dn. The found components d1, d2,
d3,…, dn were not successfully convert to their equivalent
unpacked executable codes by the Unpacking Executable
Software used. As it is done in conventional antivirus
software systems, when a packed executable program
cannot be unpacked by series of unpacking software tools,
the program is reported as a malicious infected program.

In the Detection Phase, the arrays to store the total
number of malicious attributes found, self-modification,
self-referential, self-replication, malicious system
functions for worms and Trojan are initialized to null. The
array names for malicious attributes found are general
malicious category, self-modification, self-referential,
self-replication, malicious system functions for Trojan
and worm are mal, VDSM, VDSR1, VDSR2, MST and
MSW respectively.

When control reaches the Detection phase, these arrays
are initialized to null and control is passed to the
procedure named SearchSystemFunc(ak). The
SearchSystemFunc(ak) is a procedure which takes one
argument ak; assembly code derived by the disassembly
module. The responsibility of the SearchSystemFunc(ak)
is to search and collect the set of system functions in the

assembly code presented. When a system function is
found, it is stored in a variable called sfk. The variable sfk
is passed as an argument to another procedure called
MalSystemFunction(sfk).

The MalSystemFunction(sfk) is responsible for
identifying the set of malicious system functions by
interacting with the set of definition given in the system
call behaviour storage. When the procedure finds a
malicious system function, it is stored in a variable called
mfk. As soon as the procedure MalSystemFunction(sfk)
finds a malicious system function, it is added to the array
mal. This addition is cumulative until all the malicious
system functions are collected. When the array mal is
empty after the MalSystemFunction(sfk) has been called,
the detector declares the executable program being
examined as benign. When the array mal is not empty, the
set of malicious system function collected are sent to the
virus identification module.

The system call intelligent section uses the multinomial
technique of Naïve Bayes classifier to extract the virus
attributes (self-modification, self-referential and self-
replication attributes) from the malicious attributes. Let C
denote the set of class labels, that is:
C = {C1, C2, C3} (1).

Equation 1 is the set of malicious classes and the total
number of classes is 3. Let GSF denote the Groups of
System Functions(GSF), where
GSF= { GSF1, GSF2, GSF3} (2)

Equation 2 is the set of GSF that can be got from the
malicious classes.

In a virus identification section, when malicious system
functions for the definitions for self-modification (DSM),
self-referential (DSR1) and self-modification (DSR2) are
found, they are added to their various arrays VDSM,
VDSR1 and VDSR2 respectively. The virus identification
section has six procedures they are InVSM(DSM),
OutVSM(DSM), InVSR1(DSR1), OutVSR1(DSR1),
InVSR2(DSR2) and OutVSR2(DSR2).

The procedure InVSM(DSM) takes one argument DSM
and is responsible for accumulating the set of self-
modification system functions found in a program. The
procedure OutVSM(DSM) takes one argument DSM and
is responsible for notifying the procedure InVSM(DSM)
that the all identified self-modification system functions
used by the executable program has been found and
collected. Another procedure called InVSR1(DSR1) takes
one argument DSR1 and is responsible for accumulating
the set of self-referential system functions found in a
program. The procedure OutVSR1(DSR1) takes one
argument DSR1 and is responsible for notifying the
procedure InVSR1(DSR1) that all identified self-

Canadian Journal of Pure and Applied Sciences 2779

referential system functions used by the executable
program has been found and collected.

Another procedure called InVSR2(DSR2) take one
argument DSR2 and is responsible for accumulating the
set of self-replication system functions found in a
program. The procedure OutVSR2(DSR2) take one
argument DSR2 and is responsible for notifying the
procedure InVSR2(DSR2) that all identified self-

replication system functions used by the executable
program has been found and collected. When the virus
identification section has finished examining the
executable program for the three attributes of a virus, it
will send the detection results to a virus report section. In
the virus report section, when the arrays for self-
modification(VDSM), self-referential(VDSR1) and self-
replication(VDSR2) attributes are not empty, then the
following comparisons are carried out. When an

Fig. 2. Detection Phase of Detection System.

Osaghae et al. 2780

executable program contains self-modification, self-
referential and self-replication system function attributes,
then it is a virus program with these three attributes. After
the virus detector has finished examining the executable
program for evidence of possible virus infection, then the
set of system functions used by the program are passed to
the separator module.

In the separator module, there is an attempt to accumulate
the set of system functions used by Trojan and the ones
not used by worm. This will enable the virus detector to
examine the executable program for Trojan and worm
behaviour using chi square technique.

The detector check if the system function sfk belongs to
the set of system functions sftw commonly used by Trojan
sft and the ones not worm sfw. The total number of system
functions used by Trojan and the ones not used by worm
are store in variables MST and MSW respectively. After
the separator module has finished examine the system
functions of an executable program, the set of identified
system functions for Trojan and the ones not used by a
worm are passed to the Malicious Profiling section of the
virus detector. The model for Chi square computation that
the Malicious Profiling section will used to detect Trojan
horses and worms, are presented in the form of a
pseudocode below:

Begin
1) Define Pi = (P1, P2) to be the set of profiles of

samples in the malicious attribute where Trojan and
worm system function has been identified from the
classes C1,(classes for Trojan) and C2(classes for
worm).
Define T = (T1, T2, T3, ...,Tn) to be tested samples of a
generalized malicious attributes belonging to the
classes C1, and C2.
Define Tr to be the set of system function calls used
to identify a Trojan program.
Define Wo to be the set of system function used to
identify a worm program.

2) Get the program system function calls which belong
to Tand W extracted by the separator section.

3) Compute chi-square for each attribute class for
i = 1 to 2 do

 Xi
2 = (Ai – Vi)2

 Vi
Ai is the number of observed malicious attribute and i
is 2; trojan and worm.
Vi is number of expected worm or Trojan attribute is
suppose to have.

4) Compute degree of membership σi = ∑Xi
2.

5) Compute the degree of freedom = number_ of_
attributes – 1 Degree of freedom = 2 – 1=1

6) Compute threshold value σ1, where the null
hypothesis judgment would be based upon, by

reading the degree of freedom from probability level
of d from the Chi square table.

A significant level of 0.z based on the degree of freedom,
will be selected. This means that z% of the time, X2 is
expected to be less than or equal to σ1.
X2

. z ≤ σ1.

7) Compute the classification strategy:

If
 i, 1 ≤ i ≤ 2, σi ≥ σ1
 => T є Tri.
Otherwise,
 i, 1 ≤ i ≤ 2, σi < σ1
 => T є Woi.

The behaviour of Malicious Profiling section is displayed
in figure 3. The purpose is to use the set of system
functions passed from the separator section to identify
possible Trojan and worm system functions of an
executable program. By the time Malicious Profiling
section receives the sets of system functions stored in
MST and MSW, it attempts to identify Trojan and worm
by using Chi square technique. Computation of a Chi
square terms for Trojan is CT ← MST – CTi and the one
for worm is CW ← MSW – CWi are used. MST and MSW
are the observed total number of system functions for
Trojan and worm, extracted by the separator section. CTi
and CWi are the expected total number of system
functions used by Trojan and the ones not used by worms.
CTi and CWi are stored as definitions in the Malicious
Profiling storage. The malicious profiling section is
expected to interact with these definitions during its
computation.

The final Chi square computation is CM←(CT*CT)/CWi
+ (CW)*(CW)/CTi, which determines the degree of
membership. Next, the degree of freedom is computed as
Degree of Freedom←number of attributes (2) – 1. Since
we are concerned with two attributes namely, Trojan and
worm, then the computation for degree of freedom is 1.
The next stage is to compute the threshold value TV
where the null hypothesis judgment would be based upon.
The threshold value (TV) is got from the Chi square table
by reading degree of membership against the degree of
freedom. To identify Trojan and worm, the following
comparisons are made. When an executable program
contains malicious system functions and CM < TV, then it
has Trojan codes. Again, when an executable program
contains malicious system functions and CM ≥ TV, then it
has Worm codes. Then, when an executable program
contains malicious system functions and does not have the
conditions CM < TV and CM ≥ TV, then it is an unknown
malicious codes. When mal = Ø then the executable
program being examine is benign. The final detection
results are sent to the detection report section. The

Canadian Journal of Pure and Applied Sciences 2781

Malicious Profiling storage keeps the set of definitions for
the expected worm and Trojan system functions. These
definitions are determined by the antivirus expert who
knows the exact number of system functions that make up
the expected number of sets of worm and Trojan
functions. The definition for worm system functions are
CW1=GSF1, CW2=GSF2, CW3=GSF3,…,CWj=GSFj.
CWj is the total number of Trojan system functions
extracted from the Group of system functions present in
the operating system where the program is running.
Another Definition for system functions not used by
worm are CT1=GSF1, CT2=GSF2,
CT3=GSF3,…,CTj=GSFj. CTj is the total number of
system functions not used by Trojan, and they are
extracted from the Group of system functions in the
operating system the program is running on. The
detection results got from the Malicious profiling section
is sent to detection report section.

The detection report section displays the Trojan, worm,
unknown malicious codes and benign detection results got
from the executable program. After the detection results
have been reported by the detection report section, the
virus detector exits.

CONCLUSION

In this paper, we designed a generic antivirus system that
makes use of operating system functions rather than
updating its malicious signature database. For an
executable program to operate in the computer system, it
must make use of the operating system functions also
known as the system functions. As surprising as it seems,
the operating system cannot differentiate between a set of
system functions made by a benign program from the
ones made by the malicious program. This paper has
shown the design of a generic antivirus system which

Fig. 3. Malicious Profiling Section.

Osaghae et al. 2782

makes use of deterministic finite state automata, Naïve
Bayes and Chi square to accurately detect malicious codes
from executable programs. The detection of malicious
codes is done in the absence of malicious signature
database component. The design of a generic antivirus
system proposed in this paper will be highly appreciated
by antivirus developers. The appreciation will be in terms
of reduction of human involvement, more scalable
antivirus design and elimination of malicious signatures
database from antivirus design. There is reduction of
running cost because fewer antivirus experts are required
and there is no need to perform malicious signatures
extractions from each malicious program. The antivirus
system design will be more scalable because a generic
signature is defined than having a numerous unique
malicious signature definitions. The operating system
functions are used to detect malicious code in executable
programs rather than using malicious signature database.
Our future research direction on design of generic
antivirus system is to attempt to deploy its design to the
Windows operating system functions. We are also going
to develop algorithms for the generic and proposed
Windows operating system designs. We shall also attempt
to implement the proposed Windows operating antivirus
design in C programming language and then test live
malicious programs antivirus system to determine its
efficiency.

REFERENCES

Babak, BR., Maslin, M. and Suhaimi, I. 2011. Evolution
of Computer Virus Concealment and Anti-Virus
Techniques: A Short Survey. International Journal of
Computer Science. 8(1):113-121.

Devara, V. and Murali, K. 2012. Network Based Anti-
virus Technology for Real-time Scanning. International
Journal of Computer Science Issues. 9(4):304-310.

Feng, X. 2008. Attacking Antivirus. Nevis Labs, Nevis
Networks, Inc.

Greensmith, J. and Aickelin, U. 2005. Firewalls, Intrusion
Detection Systems and Anti-Virus Scanners. School of
Computer Science and Information Technology,
University of Nottingham, Jubilee Campus, Nottingham,
UK.

Guo. F., Ferrie, P. and Chiueh, T. 2012. A Study of the
Packer Problem and Its Solutions. (Retrieved from
www.ecsl.cs.sunysb.edu/tr/ TR237.pdf).

Harley, D. and Lee, A. 2009. Heuristic Analysis:
Detecting Unknown Viruses. ESET Corporation,
Bratislava, Slovak Republic.

Kumar, S. and Spafford E. H. 1992. A Generic Virus
Scanner in C++. The COAST Project, Department of

Computer of Computer Sciences, Purdue University,
West Lafayette.

Microsoft. 2004. The Antivirus: Defense-in-Depth
Guide. Microsoft Corporation.

Morton, C. 2010. Bypassing Malware Defenses. The
SANS Institute.

NetApp. 2006. Antivirus Scanning Best Practices Guide.
Network Appliance Inc., (Retrieved from
www.netapp.com on 15/10/2012).

Pedro, B., Inaki, U., Luis, C. and Josu, F. 2012. From
Traditional Antivirus to Collective Intelligence: Panda’s
Technology Evolution. Panda Research, (Retrieved from
research.pandasecurity.com on 15/10/2012).

Roberto, B., Emanuele, G. and Luigi, VM. 2004. A Host
Intrusion Prevention System for Windows Operating
Systems. Springer-Verlag, Berlin Heidelberg.

Speice, C. 2003. Designing a Managed Antivirus Solution
for a Large Corporate Environment. SANS Institute.

Tikkanen, A. 2010. Antivirus Engines Basics. F-Secure
Corporation.

Received: Sept 19, 2013; Accepted: Oct 30, 2013

